Abstract
While performing surgical excision for breast cancer (lumpectomy), it is important to ensure a clear margin of normal tissue around the cancer to achieve complete resection. The current standard is histopathology; however, it is time-consuming and labour-intensive requiring skilled personnel. We describe a Hybrid Spectral-IRDx - a combination of the previously reported Spectral-IRDx tool with multimodal ultrasound and NIR spectroscopy techniques. We show how this portable, cost-effective, minimal-contact tool could provide rapid diagnosis of cancer using formalin-fixed (FF) and deparaffinized (DP) breast biopsy tissues. Using this new tool, measurements were performed on cancerous/fibroadenoma and its adjacent normal tissues from the same patients (N = 14). The acoustic attenuation coefficient (α) and reduced scattering coefficient (µ's) (at 850, 940, and 1060 nm) for the cancerous/fibroadenoma tissues were reported to be higher compared to adjacent normal tissues, a basis of delineation. Comparing FF cancerous and adjacent normal tissue, the difference in µ's at 850 nm and 940 nm were statistically significant (p = 3.17e-2 and 7.94e-3 respectively). The difference in α between the cancerous and adjacent normal tissues for DP and FF tissues were also statistically significant (p = 2.85e-2 and 7.94e-3 respectively). Combining multimodal parameters α and µ's (at 940 nm) show highest statistical significance (p = 6.72e-4) between FF cancerous/fibroadenoma and adjacent normal tissues. We show that Hybrid Spectral-IRDx can accurately delineate between cancerous and adjacent normal breast biopsy tissue. The results obtained establish the proof-of-principle and large-scale testing of this multimodal breast cancer diagnostic platform for core biopsy diagnosis.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have