Abstract

PurposeThis paper seeks to analyze transient convection‐diffusion by employing the generalized integral transform technique (GITT) combined with an arbitrary transient filtering solution, aimed at enhancing the convergence behavior of the associated eigenfunction expansions. The idea is to consider analytical approximations of the original problem as filtering solutions, defined within specific ranges of the time variable, which act diminishing the importance of the source terms in the original formulation and yielding a filtered problem for which the integral transformation procedure results in faster converging eigenfunction expansions. An analytical local instantaneous filtering is then more closely considered to offer a hybrid numerical‐analytical solution scheme for linear or nonlinear convection‐diffusion problems.Design/methodology/approachThe approach is illustrated for a test‐case related to transient laminar convection within a parallel‐plates channel with axial diffusion effects.FindingsThe developing thermal problem is solved for the fully developed flow situation and a step change in inlet temperature. An analysis is performed on the variation of Peclet number, so as to investigate the importance of the axial heat or mass diffusion on convergence rates.Originality/valueThis paper succeeds in analyzing transient convection‐diffusion via GITT, combined with an arbitrary transient filtering solution, aimed at enhancing the convergence behaviour of the associated eigenfunction expansions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.