Abstract

AbstractTransparent conductive oxides (TCOs) have been widely used as electrodes for various solar cell structures. For heterojunction silicon wafer solar cells, the front TCO layer not only serves as a top electrode (by enhancing the lateral conductance of the underlying amorphous silicon film), but also as an antireflection coating. These requirements make it difficult to simultaneously achieve excellent conductance and transparency, and thus, only high‐quality indium tin oxide (ITO) has as yet found its way into industrial heterojunction silicon wafer solar cells. In this Letter, we present a cost‐effective hybrid structure consisting of a TCO layer and a silver nano‐particle mesh. This structure enables the separate optimization of the electrical and optical requirements. The silver nanoparticle mesh provides high electrical conductance, while the TCO material is optimized as an antireflection coating. Therefore, this structure allows the use of cost‐effective (and less conductive) TCO materials, such as aluminium‐doped zinc oxide. The performance of the hybrid structure is demonstrated to achieve a similar visible transmission (∼86% in the 380–780 nm range) as an 80 nm thick ITO layer, but with 10 times better lateral conductance. The presented hybrid structure thus seems well suited for a variety of photovoltaic devices. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.