Abstract
We demonstrate a nonvolatile electrically erasable programmable read-only memory device using gold nanoparticles as charge storage elements deposited at room temperature by chemical processing. The nanoparticles are deposited over a thermal silicon dioxide layer that insulates them from the device silicon channel. An organic insulator deposited by the Langmuir–Blodget technique at room temperature separates the aluminum gate electrode from the nanoparticles. The device exhibits significant threshold voltage shifts after application of low-voltage pulses (⩽±6 V) to the gate and has nonvolatile retention time characteristics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.