Abstract

We consider the problem of designing a dynamic scheduling strategy that takes into account both workload and memory information in the context of the parallel multifrontal factorization. The originality of our approach is that we base our estimations (work and memory) on a static optimistic scenario during the analysis phase. This scenario is then used during the factorization phase to constrain the dynamic decisions that compute fully irregular partitions in order to better balance the workload. We show that our new scheduling algorithm significantly improves both the memory behaviour and the factorization time. We give experimental results for large challenging real-life 3D problems on 64 and 128 processors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.