Abstract

Providing successful data collection and aggregation is a primary goal for a broad spectrum of critical applications of wireless sensor networks. Unfortunately, the problem of connectivity loss, which may occur when a network suffers from natural disasters or human sabotages, may cause failure in data aggregation. To tackle this issue, plenty of strategies that deploy relay devices on target areas to restore connectivity have been devised. However, all of them assume that either the landforms of target areas are flat or there are sufficient relay devices. In real scenarios, such assumptions are not realistic. In this paper, we propose a hybrid recovery strategy based on random terrain (simply, HRSRT) that takes both realistic terrain influences and quantitative limitations of relay devices into consideration. HRSRT is proved to accomplish the biconnectivity restoration and meanwhile minimize the energy cost for data collection and aggregation. In addition, both of complexity and approximation ratio of HRSRT are explored. The simulation results show that HRSRT performs well in terms of overall/maximum energy cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.