Abstract
A Hybrid Quantum Genetic Algorithm with Fuzzy Adaptive Rotation Angle (HQGAFARA) is introduced in this work to determine the optimal placements for Unmanned Aerial Vehicles (UAVs) aimed at maximizing coverage in disaster-stricken areas. The HQGAFARA is a hybrid quantum fuzzy meta-heuristic that uses the Deutsch–Jozsa quantum circuit to generate quantum populations synergistically working as haploid recombination and mutation operators that take advantage of quantum entanglement, providing exploitative and explorative features to produce new individuals. In place of the conventional lookup table or mathematical equation, we introduced a fuzzy heuristic to adapt the rotation angle employed in quantum gates. The hybrid nature of this algorithm becomes evident through its utilization of both classical and quantum computing components. Experimental evaluations were conducted using two distinct test sets. The first set, termed the “best case”, represents conditions that are the most favorable for determining the UAV positions, while the second set, the “worst-case”, simulates highly challenging conditions for locating the UAV positions, thereby posing a significant test for the proposed algorithm. We carried out statistical comparative analyses, assessing the HQGAFARA against other hybrid quantum algorithms that employ different rotation angles and against the classical genetic algorithm. The experimental results demonstrated that the HQGAFARA performed comparably, if not better, to the classical genetic algorithm regarding precision. Furthermore, quantum algorithms showcased their computational prowess in experiments related to the convergence time.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have