Abstract
During a long-term operation of polymer electrolyte membrane fuel cells(PEMFCs), the fuel cell performance may degrade due to severe agglomeration and dissolution of metal nanoparticles in the cathode. To enhance the electrochemical durability of metal catalysts and to prevent the particle agglomeration in PEMFC operation, this paper proposes a hybrid catalyst structure composed of PtCo alloy nanoparticles encapsulated by porous carbon layers. In the hybrid catalyst structure, the dissolution and migration of PtCo nanoparticles can be effectively prevented by protective carbon shells. In addition, O2 can properly penetrate the porous carbon layers and react on the active Pt surface, which ensures high catalytic activity for the oxygen reduction reaction. Although the hybrid catalyst has a much smaller active surface area due to the carbon encapsulation compared to a commercial Pt catalyst without a carbon layer, it has a much higher specific activity and significantly improved durability than the Pt catalyst. Therefore, it is expected that the designed hybrid catalyst concept will provide an interesting strategy for development of high-performance fuel cell catalysts.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have