Abstract
A hybrid probabilistic road map (PRM) path planning algorithm based on historical automatic identification system (AIS) information and Douglas–Peucker (DP) compression is proposed to address the issues of low path quality and the need for extensive sampling in the traditional PRM algorithm. This innovative approach significantly reduces the number of required samples and decreases path planning time. The process begins with the collection of historical AIS data from the autonomous vessel’s navigation area, followed by comprehensive data-cleaning procedures to eliminate invalid and incomplete records. Subsequently, an enhanced DP compression algorithm is employed to streamline the cleaned AIS data, minimizing waypoint data while retaining essential trajectory characteristics. Intersection points among various vessel trajectories are then calculated, and these points, along with the compressed AIS data, form the foundational dataset for path searching. Building upon the traditional PRM framework, the proposed hybrid PRM algorithm integrates the B-spline algorithm to smooth and optimize the generated paths. Comparative experiments conducted against the standard PRM algorithm, A*, and Dijkstra algorithms demonstrate that the hybrid PRM approach not only reduces planning time but also achieves superior path smoothness. These improvements enhance both the efficiency and accuracy of path planning for maritime autonomous surface ships (MASS), marking a significant advancement in autonomous maritime navigation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have