Abstract

The automatization by industrial robot of today is merely rely on to the simple position repeating works, but requirements of research and development to the force control which would adapt positively to various restriction or contacting works to environment. In this paper, a learning control algorithm using, neural networks is proposed for the position and force control by a direct-drive robot. The proposed controller is the feedback controller to which the learning function of neural network is added on to and has a character of improving controller's efficiency by learning. The effectiveness of the proposed algorithm is demonstrated by the experiment on the hybrid position and force control of a parallelogram link robot with a force sensor

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.