Abstract
AbstractThe experimental results of using a hybrid platform to mitigate vibration of a batch of high‐tech equipment installed in a building subject to nearby traffic‐induced ground motion have been presented and discussed in the companion paper. Based on the identified dynamic properties of both the building and the platform, this paper first establishes an analytical model for hybrid control of the building‐platform system subject to ground motion in terms of the absolute co‐ordinate to facilitate the absolute velocity feedback control strategy used in the experiment. The traffic‐induced ground motion used in the experiment is then employed as input to the analytical model to compute the dynamic response of the building‐platform system. The computed results are compared with the measured results, and the comparison is found to be satisfactory. Based on the verified analytical model, coupling effects between the building and platform are then investigated. A parametric study is finally conducted to further assess the performance of both passive and hybrid platforms at microvibration level. The analytical study shows that the dynamic interaction between the building and platform should be taken into consideration. The hybrid control is effective in reducing both velocity response and drift of the platform/high‐tech equipment at microvibration level with reasonable control force. Copyright © 2003 John Wiley & Sons, Ltd.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have