Abstract
Photonic data routing in optical networks is expected to overcome the limitations of electronic routers with respect to data rate, latency, and energy consumption. However, photonics-based routers suffer from dynamic power consumption, and nonsimultaneous usage of multiple wavelength channels when microrings are deployed and are sizable in footprint. Here, we show a design for the first hybrid photonic-plasmonic, nonblocking, broadband 5 × 5 router based on 3-waveguide silicon photonic-plasmonic 2 × 2 switches. The compactness of the router (footprint <; 200 μm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> ) results in a short optical propagation delay (0.4 ps) enabling high data capacity up to 2 Tb/s. The router has an average energy consumption ranging from 0.1 to 1.0 fJ/bit depending on either DWDM or CDWM operation, enabled by the low electrical capacitance of the switch. The total average routing insertion loss of 2.5 dB is supported via an optical mode hybridization deployed inside the 2 × 2 switches, which minimizes the coupling losses between the photonic and plasmonic sections of the router. The router's spectral bandwidth resides in the S, C, and L bands and exceeds 100 nm supporting wavelength division multiplexing applications since no resonance feature is required. Taken together this novel optical router combines multiple design features, all required in next-generation high data-throughput optical networks and computing systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have