Abstract
Researchers have developed different metaheuristic algorithms to solve various optimization problems. The efficiency of a metaheuristic algorithm depends on the balance between exploration and exploitation. This paper presents the hybrid parliamentary optimization and big bang-big crunch (HPO-BBBC) algorithm, which is a combination of the parliamentary optimization algorithm (POA) and the big bang-big crunch (BB-BC) optimization algorithm. The intragroup competition phase of the POA is a process that searches for potential points in the search space, thereby providing an exploration mechanism. By contrast, the BB-BC algorithm has an effective exploitation mechanism. In the proposed method, steps of the BB-BC algorithm are added to the intragroup competition phase of the POA in order to improve the exploitation capabilities of the POA. Thus, the proposed method achieves a good balance between exploration and exploitation. The performance of the HPO-BBBC algorithm was tested using well-known mathematical test functions and compared with that of the POA, the BB-BC algorithm, and some other metaheuristics, namely the genetic algorithm, multiverse optimizer, crow search algorithm, dragonfly algorithm, and moth-flame optimization algorithm. The HPO-BBBC algorithm was found to achieve better optimization performance and a higher convergence speed than the above-mentioned algorithms on most benchmark problems.
Highlights
Optimization refers to the selection of the best solution from among multiple solutions to a problem
The hybrid parliamentary optimization and big bang-big crunch (HPO-BBBC) algorithm, which is a combination of the parliamentary optimization algorithm (POA) and the BB-BC algorithm, is proposed to solve global numerical optimization problems
To illustrate the convergence speeds of the algorithms, the convergence plots for the F1, F2, F4, F6, F8, F9, F10, F15, and F17 functions are shown in Figure 6, and it indicates that the HPO-BBBC algorithm converges faster than the mentioned algorithms in most of the benchmark functions
Summary
Optimization refers to the selection of the best solution from among multiple solutions to a problem. The parliamentary optimization algorithm (POA) was proposed by Borji [17] for global optimization. It is inspired by the competitive and cooperative behaviors of parliamentary parties. The regular members are biased toward the candidate members in the ratio of their fitness values, which allows the algorithm to search for potential points in the search space. The hybrid parliamentary optimization and big bang-big crunch (HPO-BBBC) algorithm, which is a combination of the POA and the BB-BC algorithm, is proposed to solve global numerical optimization problems. In this phase, the regular members are biased toward the candidate members in the ratio of their fitness values. When the stopping conditions are satisfied, the algorithm terminates and the best member of the best group is considered as the solution [17, 18]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have