Abstract

The need for increased accuracies in time series forecasting has motivated the researchers to develop innovative models. In this paper, a new hybrid time series neural network model is proposed that is capable of exploiting the strengths of traditional time series approaches and artificial neural networks (ANNs). The proposed approach consists of an overall modelling framework, which is a combination of the conventional and ANN techniques. The steps involved in the time series analysis, e.g. de-trending and de-seasonalisation, can be carried out before gradually presenting the modified time series data to the ANN. The proposed hybrid approach for time series forecasting is tested using the monthly streamflow data at Colorado River at Lees Ferry, USA. Specifically, results from four time series models of auto-regressive (AR) type and four ANN models are presented. The results obtained in this study suggest that the approach of combining the strengths of the conventional and ANN techniques provides a robust modelling framework capable of capturing the non-linear nature of the complex time series and thus producing more accurate forecasts. Although the proposed hybrid neural network models are applied in hydrology in this study, they have tremendous scope for application in a wide range of areas for achieving increased accuracies in time series forecasting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.