Abstract
Drug delivery selectivity is a challenge for cancer treatment. A hybrid pegylated pH-sensitive liposome-extracellular vesicle isolated from human breast cancer cell MDA-MB-231 was developed to investigate its in vitro activity against breast cancer cells of different molecular profiles to overcome this inconvenience. The hybrid nanosystem was produced by film hydration, and doxorubicin (DOX) was encapsulated in this system using the ammonium sulfate gradient method. The characterization of this hybrid nanosystem revealed a mean diameter of 140.20 ± 2.70 nm, a polydispersity index of 0.102 ± 0.033, an encapsulation efficiency of doxorubicin of 88.9% ± 2.4, and a great storage stability for 90 days at 4 °C. The fusion of extracellular vesicles with liposomes was confirmed by nanoflow cytometry using PE-conjugated human anti-CD63. This hybrid nanosystem demonstrated cytotoxicity against human breast cancer cell lines with different molecular subtypes, enhanced anti-migration properties, and exhibited similar cellular uptake to the free DOX treatment. Preliminary acute toxicity assessments using Balb/C female mice indicated a median lethal dose of 15-17.5 mg/kg, with no evidence of splenic, liver, heart, bone marrow, and renal damage at a dose of 15 mg/kg. These findings suggest the hybrid formulation as a versatile nanocarrier for the treatment of various breast cancer subtypes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.