Abstract
An internal photoemission-based silicon photodetector detects light below the silicon bandgap at room temperature and can exhibit spectrally broad behavior, making it potentially suited to meet the need for a near-infrared pure Si photodetector. In this work, the implementation of a thin Au insertion layer into an ITO/n-Si Schottky photodetector can profoundly affect the barrier height and significantly improve the device performance. By fabricating a nanoscale thin Au layer and an ITO electrode on a silicon substrate, we achieve a well-behaved ITO/Au/n-Si Schottky diode with a record dark current density of 3.7 × 10 − 7 A / cm 2 at − 1 V and a high rectification ratio of 1.5 × 10 8 at ± 1 V . Furthermore, the responsivity has been obviously improved without sacrificing the dark current performance of the device by decreasing the Au thickness. Such a silicon-based photodetector with an enhanced performance could be a promising strategy for the realization of a monolithic integrated pure silicon photodetector in optical communication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.