Abstract

In this paper, a multilayer barrier thin film, based on polyvinylidene difluoride (PVDF)–silicon dioxide (SiO2), has been fabricated on a PET substrate through a novel method of joint fabrication techniques. The inorganic SiO2 thin film was deposited using a roll-to-roll atmospheric atomic layer deposition system (R2R-AALD), while the organic PVDF layer was deposited on the surface of SiO2 through the electrohydrodynamic atomization (EHDA) technique. The multilayer barrier thin films exhibited very good surface morphology, chemical composition, and optical properties. The obtained values for arithmetic surface roughness and water contact angle of the as-developed multilayer barrier thin film were 3.88 nm and 125°, respectively. The total thickness of the multilayer barrier thin film was 520 nm with a high optical transmittance value (85–90%). The water vapor transmission rate (WVTR) of the barrier thin film was ~ 0.9 × 10−2 g m−2 day−1. This combination of dual fabrication techniques (R2R-AALD and EHDA) for the development of multilayer barrier thin films is promising for gas barrier applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call