Abstract
The use of artificial intelligence in clinical care to improve decision support systems is increasing. This is not surprising since, by its very nature, the practice of medicine consists of making decisions based on observations from different systems both inside and outside the human body. In this paper, we combine three general systems (ICU, diabetes, and comorbidities) and use them to make patient clinical predictions. We use an artificial intelligence approach to show that we can improve mortality prediction of hospitalized diabetic patients. We do this by utilizing a machine learning approach to select clinical input features that are more likely to predict mortality. We then use these features to create a hybrid mortality prediction model and compare our results to non-artificial intelligence models. For simplicity, we limit our input features to patient comorbidities and features derived from a well-known mortality measure, the Sequential Organ Failure Assessment (SOFA).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: International Journal on Cybernetics & Informatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.