Abstract
In this paper, we analyze, model, predict and cluster Global Active Power, i.e., a time series data obtained at one minute intervals from electricity sensors of a household. We analyze changes in seasonality and trends to model the data. We then compare various forecasting methods such as SARIMA and LSTM to forecast sensor data for the household and combine them to achieve a hybrid model that captures nonlinear variations better than either SARIMA or LSTM used in isolation. Finally, we cluster slices of time series data effectively using a novel clustering algorithm that is a combination of density-based and centroid-based approaches, to discover relevant subtle clusters from sensor data. Our experiments have yielded meaningful insights from the data at both a micro, day-to-day granularity, as well as a macro, weekly to monthly granularity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have