Abstract

AbstractAccurate estimation of wind power is essential for predicting and maintaining the power balance in the power system. This paper proposes a novel approach to enhance the accuracy of wind power estimation through a hybrid model integrating neural networks and error discrimination‐correction techniques. In order to improve the accuracy of estimation, a bidirectional gating recurrent unit is developed, forming an initial wind power estimation curve through training. Additionally, a sequential model‐based algorithmic configuration optimizes bidirectional gating recurrent unit's network hyperparameters. To tackle estimation errors, a multi‐layer perceptron combined with sequential model‐based algorithmic configuration is employed to create a classification model that automatically discerns the quality of estimates. Subsequently, an innovative correction model, based on grey relevancy degree and relevancy errors, is devised to rectify erroneous estimates. The final estimates result from a summation of the initial estimates and the values derived from error corrections. By analysing the real data from a wind farm in northwest China, a simulation test validates the proposed hybrid model. Experimental results demonstrate a substantial improvement in modelling accuracy when compared to the initial model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.