Abstract

This paper reports a straightforward technique for three-dimensional (3D) visualization of a flow profile by a hybrid algorithm combining Fourier transform orthogonal fringe projection and laser speckle imaging techniques. The use of orthogonal projection aims to suppress the zero order allowing surface reconstruction with high spatial resolution and accuracy while analyzing the intensity fluctuations of diffuse backscattered laser light providing 2D flow information. Once both are achieved, 3D flow visualization can be displayed. The method is experimentally validated first with a plastic tube filled with scattering liquid (milk) running at various controlled flow rates and then with the tube embedded under scattering layers (chicken breast) of varying thickness. The system includes a single, common camera, a commercial projector (profilometry channel), a laser light source (flow channel), and a computer station. In addition, orthogonal projection processing was combined with Hilbert transform, increasing the visualization and resolution of the measured flow profile.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call