Abstract

Growing applications of non-homogenous media in engineering structures require the application of powerful computational tools. A novel hybrid Meshless Displacement Discontinuity Method (MDDM) for cracked Reissner's plate in Functionally Graded Materials (FGMs) is presented in this paper. The fundamental solutions of slope and deflection discontinuity for an isotropic homogenous media are chosen as a part of general solutions to create the gaps between the crack surfaces. The governing equation is satisfied by using the meshless methods such as the Meshless Local Petrov-Galerkin (MLPG) and the Point Collocation Method (PCM) with Lagrange series interpolation and mapping technique. The Stress Intensity Factors (SIFs) are evaluated analytically with the Chebyshev polynomials. The accuracy is verified by comparison of numerical and analytical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call