Abstract
This paper presents mixed-integer programming models to hybrid manufacturing and remanufacturing lot-sizing problems in which remanufactured products are treated as new ones, so that both manufactured and remanufactured products compete to meet the demands. Differently from previous studies, we consider an environment with multiple products, both manufacturing and remanufacturing costs, disposal, backlogging, and the inherent uncertainties of demands, return rates of usable products, and setup costs. In order to deal with these uncertainties, we propose a scenario-based two-stage stochastic programming model that assumes production and setup as first-stage decision variables, whereas inventory, disposal, and backlogging are defined as second-stage decision variables. We also analyze a risk-averse model in an attempt to reduce the dispersion of the second-stage costs. The main results of the present study indicate that setup costs for remanufacturing can be decisive in choosing between manufacturing or remanufacturing. Even though remanufacturing costs are lower, the process is still largely dependent on return rates and low storage costs for returned products.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.