Abstract

Predicting the liquid compositions that will vitrify at experimentally accessible quench rates remains one of the grand challenges in the field of condensed matter physics. This glass-forming ability can be quantified as the critical quench rate needed to suppress crystallization. Knowledge of this critical quench rate also informs which glass composition could be used for new applications. There have been several physical and empirical models presented in the literature to predict the critical quench rate/glass forming ability. These models range from those theoretically derived to those quantified only through experimental characterization. In this work, we instead propose a new method to calculate the critical quench rate using the recently developed toy landscape model combined with machine learning. The toy landscape model accesses the underlying physics that control the vitrification behavior by directly simulating the liquid thermodynamics and kinetics. The results are discussed in terms of industrial impact, physical insights, and how the glass science community can develop improved predictions of glass-forming ability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.