Abstract

Localization in indoor environments is essential to further support automation in a wide array of scenarios. Moreover, direction-of-arrival knowledge is essential to supporting high speed millimeter-wave (mmWave) links in indoor environments, since most mmWave links are of a line-of-sight nature to combat the high pathloss in this band. Accurate wireless localization in indoor environments, however, has proved a challenging task due to multi-path fading. Additionally, due to the effects of multi-path fading, methods such as trilateration alone do not result in accurate localization. As such, in this paper we propose to combine the knowledge of wireless localization methods with that of odometry sensors to track the location of a mobile robot. This paper presents significant real-world localization measurement results for both Wi-Fi and odometry in diverse environments at the Boise State University campus. Using these results, we devise an algorithm to combine data from both odometry and wireless localization. This algorithm is shown in hardware testing to reduce the localization error for a mobile robot

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.