Abstract
High-density electroencephalographic (EEG) systems are utilized in the study of the human brain and its underlying behaviors. However, working with EEG data requires a well-cleaned signal, which is often achieved through the use of independent component analysis (ICA) methods. The calculation time for these types of algorithms is the longer the more data we have. This article presents a hybrid implementation of the fastICA algorithm that uses parallel programming techniques (libraries and extensions of the Intel processors and CUDA programming), which results in a significant acceleration of execution time on selected architectures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.