Abstract

Most previous heterogeneous transfer learning methods learn a cross-domain feature mapping between heterogeneous feature spaces based on a few cross-domain instance-correspondences, and these corresponding instances are assumed to be representative in the source and target domains respectively. However, in many real-world scenarios, this assumption may not hold. As a result, the constructed feature mapping may not be precisely due to the bias issue of the correspondences in the target or (and) source domain(s). In this case, a classifier trained on the labeled transformed-source-domain data may not be useful for the target domain. In this paper, we present a new transfer learning framework called Hybrid Heterogeneous Transfer Learning (HHTL), which allows the corresponding instances across domains to be biased in either the source or target domain. Specifically, we propose a deep learning approach to learn a feature mapping between cross-domain heterogeneous features as well as a better feature representation for mapped data to reduce the bias issue caused by the cross-domain correspondences. Extensive experiments on several multilingual sentiment classification tasks verify the effectiveness of our proposed approach compared with some baseline methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.