Abstract
Distributed generation (DG) is integrated in a passive distribution system to reduce power loss, improve voltage profile, and increase power output. To reap the most benefits of the distribution system, the best location and appropriate DG size must be determined. This paper presents a hybrid Grey wolf Optimizer (GWO) and Particle swarm optimization (PSO) approach for determining the best placement and DG size while considering a multi-objective function that includes active and reactive power loss minimization as well as voltage profile enhancement. Dilla distribution system was used as a case study and the weighted technique was used to convert to a single objective function while taking into account multiple constraints such as bus voltage limit, DG output limit, and branch current limit. DG penetration is limited to up 60% of the total active load on the feeder and a forward–backward sweep load flow algorithm was used to generate the load flow solutions. The findings of the study show that combining three PV-DGs (Case 3) is the best way to improve voltage profile and minimize losses. In addition, the proposed hybrid GWO-PSO algorithm performed better compared to the other four algorithms (Grey Wolf Optimization (GWO), Whale Optimization Algorithm (WOA), Particle swarm optimization (PSO), and sine cosine algorithm (SCA)) in terms of achieving the best multi-objective function (MOF) outcome.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.