Abstract

This paper presents a genetic algorithm for the Euclidean Steiner tree problem. This is an optimization problem whose objective is to obtain a minimum length tree to interconnect a set of fixed points, and for this purpose to be achieved, new auxiliary points, called Steiner points, can be added. The proposed heuristic uses a genetic algorithm to manipulate spanning trees, which are then transformed into Steiner trees by inserting and repositioning the Steiner points. Greedy genetic operators and evolutionary strategies are tested. Results of numerical experiments for benchmark library problem (OR-Library) are presented and discussed.This paper presents a genetic algorithm for the Euclidean Steiner tree problem. This is an optimization problem whose objective is to obtain a minimum length tree to interconnect a set of fixed points, and for this purpose to be achieved, new auxiliary points, called Steiner points, can be added. The proposed heuristic uses a genetic algorithm to manipulate spanning trees, which are then transformed into Steiner trees by inserting and repositioning the Steiner points. Greedy genetic operators and evolutionary strategies are tested. Results of numerical experiments for benchmark library problem (OR-Library) are presented and discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.