Abstract
The Steiner tree problem is a well known network optimization problem which asks for a connected minimum network (called a Steiner minimum tree) spanning a given point set N. In the original Steiner tree problem the given points lie in the Euclidean plane or space, and the problem has many variants in different applications now. Recently a new type of Steiner minimum tree, probability Steiner minimum tree, is introduced by the authors in the study of phylogenies. A Steiner tree is a probability Steiner tree if all points in the tree are probability vectors in a vector space. The points in a Steiner minimum tree (or a probability Steiner tree) that are not in the given point set are called Steiner points (or probability Steiner points respectively). In this paper we investigate the properties of Steiner points and probability Steiner points, and derive the formulae for computing Steiner points and probability Steiner points in ℓ1- and ℓ2-metric spaces. Moreover, we show by an example that the length of a probability Steiner tree on 3 points and the probability Steiner point in the tree are smooth functions with respect to p in d-space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.