Abstract
A novel methodology hybridizing genetic algorithms (GAs) and support vector regression (SVR) and capable of forecasting atmospheric corrosion of metallic materials such as zinc and steel has been proposed and tested. Available techniques of data mining of the atmospheric corrosion of zinc and steel are used to examine the forecasting capability of the model. In order to improve predictive accuracy and generalization ability, GAs are adopted to automatically determine the optimal hyper-parameters for SVR. The performance of the hybrid model (GAs + SVR = GASVR) and the artificial neural network (ANN) has been compared with the experimental values. The result shows that the hybrid model provides better prediction capability and is therefore considered as a promising alternative method for forecasting atmospheric corrosion of zinc and steel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.