Abstract
This study develops a novel methodology hybridizing genetic algorithms (GAs) and support vector regression (SVR) and implements this model in a problem forecasting hourly cooling load. The aim of this study is to examine the feasibility of SVR in building cooling load forecasting by comparing it with back-propagation neural networks (BPNN) and the autoregressive integrated moving average (ARIMA) model. To build an effective SVR model with predictive accuracy and generalization ability, real value GAs are adopted to automatically determine the optimal hyper-parameters for SVR. The experimental results demonstrate that the hybrid model provides better prediction capability than the BPNN and ARIMA models, and therefore is considered as a promising alternative method for forecasting building hourly cooling load.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.