Abstract

Recent advances in semiconductor performance made possible by organic π-electron molecules, carbon-based nanomaterials, and metal oxides have been a central scientific and technological research focus over the past decade in the quest for flexible and transparent electronic products. However, advances in semiconductor materials require corresponding advances in compatible gate dielectric materials, which must exhibit excellent electrical properties such as large capacitance, high breakdown strength, low leakage current density, and mechanical flexibility on arbitrary substrates. Historically, conventional silicon dioxide (SiO2) has dominated electronics as the preferred gate dielectric material in complementary metal oxide semiconductor (CMOS) integrated transistor circuitry. However, it does not satisfy many of the performance requirements for the aforementioned semiconductors due to its relatively low dielectric constant and intransigent processability. High-k inorganics such as hafnium dioxide (HfO2) or zirconium dioxide (ZrO2) offer some increases in performance, but scientists have great difficulty depositing these materials as smooth films at temperatures compatible with flexible plastic substrates. While various organic polymers are accessible via chemical synthesis and readily form films from solution, they typically exhibit low capacitances, and the corresponding transistors operate at unacceptably high voltages. More recently, researchers have combined the favorable properties of high-k metal oxides and π-electron organics to form processable, structurally well-defined, and robust self-assembled multilayer nanodielectrics, which enable high-performance transistors with a wide variety of unconventional semiconductors. In this Account, we review recent advances in organic-inorganic hybrid gate dielectrics, fabricated by multilayer self-assembly, and their remarkable synergy with unconventional semiconductors. We first discuss the principals and functional importance of gate dielectric materials in thin-film transistor (TFT) operation. Next, we describe the design, fabrication, properties, and applications of solution-deposited multilayer organic-inorganic hybrid gate dielectrics, using self-assembly techniques, which provide bonding between the organic and inorganic layers. Finally, we discuss approaches for preparing analogous hybrid multilayers by vapor-phase growth and discuss the properties of these materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call