Abstract

Carbon trading is a market-based mechanism towards low-carbon electric power systems. A hy-brid game optimization model is established for deriving the optimal trading price between mi-crogrids (MGs) as well as providing the optimal pricing scheme for trading between the microgrid cluster(MC) and the upper-layer service provider (SP). At first, we propose a robust optimization model of microgrid clusters from the perspective of risk aversion, in which the uncertainty of wind and photovoltaic (PV) output is modeled with resort to the information gap decision theo-ry(IGDT). Finally, based on the Nash bargaining theory, the electric power transaction payment model between MGs is established, and the alternating direction multiplier method (ADMM) is used to solve it, thus effectively protecting the privacy of each subject. It shows that the proposed strategy is able to quantify the uncertainty of wind and PV factors on dispatching operations. At the same time, carbon emission could be effectively reduced by following the tiered carbon price scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.