Abstract

Simultaneous photopolymerization of radical and cationic systems is one strategy to generate polymer network architectures named interpenetrating polymer networks (IPNs). In these hybrid systems, phase separation and final polymer morphology are ultimately governed by thermodynamic incompatibility and polymerization kinetics. This behavior is quite complex, as numerous factors can affect polymerization kinetics including monomer/oligomer viscosity and structure, light intensity, photoinitiator content and absorbance, cross-linking, vitrification, etc. In this work, the impact of photoinitiator concentration and monomer fraction on surface morphologies in a hybrid radical/cationic phase-separated system was examined. Wrinkles formed on the surface of photopolymerized films depend on the polymerization rate and acrylate/epoxy ratio. This phenomenon is partially explained by the rapid polymerization rate associated with the development of an epoxy matrix and a smaller acrylate domain. The size and shape of the wrinkles can be controlled by varying formulation parameters (mainly, composition) and photoinitiator content. It was possible to create surface roughness and consequently decrease the gloss by controlling the polymerization kinetics and phase-separated morphology. This study demonstrates that the morphology, polymerization kinetics, and film properties (e.g., gloss, transparency) can be manipulated with the ratio of the acrylate/epoxy mixture and the photoinitiator content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.