Abstract

This study aims at analyzing the water budget of the unconfined Beauce aquifer (8000 km2) over a 35 year period, by modeling the hydrological functioning and quantifying exchanged water fluxes inside the system. A distributed process‐based model (DPBM) is implemented to model the surface, the unsaturated zone and the aquifer subsystems. Based on an extensive literature review on multiparameter optimization and inverse problem, a pragmatic hybrid fitting method that couples manual and automatic calibration is developed. Three data subsets are used for calibration (10 year), validation (10 year) and test (35 year). The global piezometric head root‐mean‐square error is around 2.5 m for the three subsets and is rather uniformly spatially distributed over 78 piezometers. The sensitivity of the simulation to the different steps of the calibration process is investigated. The transmissivity field permits the fitting of the low‐frequency signal for long‐term filtering of the recharge signal, whereas the storage coefficient filters the signal with a higher frequency. For long‐term insight into aquifer system functioning, the priority is thus to first fit the transmissivity field and to assess the distributed aquifer recharge accurately. The fitted DPBM, coupled with a linear model of coregionalization, is then used to quantify the hydrosystem water mass balance between 1974 and 2009, indicating that there is yet no trend of water resources decrease neither due to climate nor to human activities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call