Abstract
PurposeThe purpose of this paper is to propose a new framework based on linear control system theory and the use of proportional (P) controller and proportional integral (PI) controller to address identified stability issues and control the time properties in hybrid fire testing.Design/methodology/approachThe paper approaches hybrid fire testing as a control problem. It establishes the state equation to give the general stability conditions. Then, it shows how P and PI controllers can be incorporated in the system to maintain stability. A virtual hybrid fire testing is performed on a 2D steel frame for validation and to compare the performance of the controllers.FindingsControl system theory provides an efficient framework for hybrid fire testing and rigorously formulate the stability conditions of the system. The use of a P-controller stabilises the process, but this controller is not suitable for continuous change of stiffness of the substructures. In contrast, a PI-controller handle the stiffness changes. The results of a virtual hybrid fire testing of a 2D steel frame shows that the PI-controller succeeds in reproducing the global behaviour of the frame, even if the surrounding structure is non-linear and subjected to fire.Originality/valueThe paper provides a rigorous formulation of the general problem of hybrid fire testing and shows the interest of a PI controller to control the process under varying stiffness. This methodology is a step forward for hybrid fire testing because it allows capturing the global behaviour of a structure, including where the numerical substructure behaves nonlinearly and is subjected to fire.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.