Abstract
A numerical framework is developed for aspherical atomic Kohn-Sham density functional theory calculations. The framework invokes higher-order finite elements as a radial discretization in combination with a multipole expansion for controlling the spherical resolution. Both all-electron and nonlocal pseudopotential calculations are addressed in a unified setting. The overall approach is validated through a range of numerical examples which demonstrate the systematic convergence of the radial and spherical discretizations as well as the outstanding accuracy that can be efficiently obtained in the presence of strong aspherical external fields. Overall, the presented approach offers a route to adaptive local enrichment for electronic structure calculation in the context of the finite element method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.