Abstract

We use voxel deep neural networks to predict energy densities and functional derivatives of electron kinetic energies for the Thomas-Fermi model and Kohn-Sham density functional theory calculations. We show that the ground-state electron density can be found via direct minimization for a graphene lattice without any projection scheme using a voxel deep neural network trained with the Thomas-Fermi model. Additionally, we predict the kinetic energy of a graphene lattice within chemical accuracy after training from only two Kohn-Sham density functional theory (DFT) calculations. We identify an important sampling issue inherent in Kohn-Sham DFT calculations and propose future work to rectify this problem. Furthermore, we demonstrate an alternative, functional derivative-free, Monte Carlo based orbital-free density functional theory algorithm to calculate an accurate two-electron density in a double inverted Gaussian potential with a machine-learned kinetic energy functional.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.