Abstract
Diagnosis of cancer is one of the most emerging clinical applications in microarray gene expression data. However, cancer classification on microarray gene expression data still remains a difficult problem. The main reason for this is the significantly large number of genes present relatively compared to the number of available training samples. In this paper, we propose a hybrid feature selection approach that combines the correlation coefficient with particle swarm optimization. The process of feature selection and classification is performed on three multi-class datasets namely Lymphoma, MLL and SRBCT. After the process of feature selection is performed, the selected genes are subjected to Extreme Learning Machines Classifier. Experimental results show that the proposed hybrid approach reduces the number of effective levels of gene expression and obtains higher classification accuracy and uses fewer features compared to the same experiment performed using the traditional tree-based classifiers like J48, random forest, random trees, decision stump and genetic algorithm as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.