Abstract
ObjectivesEmerging oncotherapeutic strategies require the induction of an immunostimulatory tumor microenvironment (TME) containing numerous tumor‐reactive CD8+ T cells. Interleukin‐7 (IL‐7), a T‐cell homeostatic cytokine, induces an antitumor response; however, the detailed mechanisms underlying the contributions of the IL‐7 to TME remain unclear. Here, we aimed to investigate the mechanism underlying the induction of antitumor response by hybrid Fc‐fused long‐acting recombinant human IL‐7 (rhIL‐7‐hyFc) through regulation of both adaptive and innate immune cells in the TME.MethodsWe evaluated rhIL‐7‐hyFc‐mediated antitumor responses in murine syngeneic tumor models. We analysed the cellular and molecular features of tumor‐infiltrating lymphocytes (TILs) and changes in the TME after rhIL‐7‐hyFc treatment. Furthermore, we evaluated the antitumor efficacy of rhIL‐7‐hyFc combined with chemotherapy and checkpoint inhibitors (CPIs).ResultsSystemic delivery of rhIL‐7‐hyFc induced significant therapeutic benefits by expanding CD8+ T cells with enhanced tumor tropism. In tumors, rhIL‐7‐hyFc increased both tumor‐reactive and bystander CD8+ TILs, all of which displayed enhanced effector functions but less exhausted phenotypes. Moreover, rhIL‐7‐hyFc suppressed the generation of immunosuppressive myeloid cells in the bone marrow of tumor‐bearing mice, resulting in the immunostimulatory TME. Combination therapy with chemotherapy and CPIs, rhIL‐7‐hyFc elicited a strong antitumor response and even under a T lymphopenic condition by restoring CD8+ T cells. When combined with chemotherapy and CPIs, rhIL‐7‐hyFc administration enhanced antitumor response under intact andlymphopenic conditions by restoring CD8+ T cells.ConclusionTaken together, these data demonstrate that rhIL‐7‐hyFc induces antitumor responses by generating T‐cell‐inflamed TME and provide a preclinical proof of concept of immunotherapy with rhIL‐7‐hyFc to enhance therapeutic responses in the clinic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.