Abstract

Luminescent metal halides are attracting growing attention as scintillators for X-ray imaging in safety inspection, medical diagnosis, etc. Here we present brand-new hybrid Eu(II)-bromide scintillators, 1D type [Et4N]EuBr3·MeOH and 0D type [Me4N]6Eu5Br16·MeOH, with spin-allowed 5d-4f bandgap transition emission toward simplified carrier transport during scintillation process. The 1D/0D structures with edge/face -sharing [EuBr6]4− octahedra further contribute to lowing bandgaps and enhancing quantum confinement effect, enabling efficient scintillation performance (light yield ~73100 ± 800 Ph MeV−1, detect limit ~18.6 nGy s−1, X-ray afterglow ~ 1% @ 9.6 μs). We demonstrate the X-ray imaging with 27.3 lp mm−1 resolution by embedding Eu(II)-based scintillators into AAO film. Our results create the new family of low-dimensional rare-earth-based halides for scintillation and related optoelectronic applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.