Abstract
We deal with the Bayes type estimators and the maximum likelihood type estimators of both drift and volatility parameters for small diffusion processes defined by stochastic differential equations with small perturbations from high frequency data. From the viewpoint of numerical analysis, initial Bayes type estimators for both drift and volatility parameters based on reduced data are required, and adaptive maximum likelihood type estimators with the initial Bayes type estimators, which are called hybrid estimators, are proposed. The asymptotic properties of the initial Bayes type estimators based on reduced data are derived and it is shown that the hybrid estimators have asymptotic normality and convergence of moments. Furthermore, a concrete example and simulation results are given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.