Abstract

Lithium batteries have recently attracted significant attention as highly promising energy storage devices within the secondary battery industry. However, it is important to note that they may pose safety risks, including the potential for explosions during use. Therefore, achieving stable and safe utilization of these batteries necessitates accurate state-of-charge (SOC) estimation. In this study, we propose a hybrid model combining temporal convolutional network (TCN) and eXtreme gradient boosting (XGBoost) to investigate the nonlinear and evolving characteristics of batteries. The primary goal is to enhance SOC estimation performance by leveraging TCN’s long-effective memory capabilities and XGBoost’s robust generalization abilities. We conducted experiments using datasets from NASA, Oxford, and a vehicle simulator to validate the model’s performance. Additionally, we compared the performance of our model with that of a multilayer neural network, long short-term memory, gated recurrent unit, XGBoost, and TCN. The experimental results confirm that our proposed TCN–XGBoost hybrid model outperforms the other models in SOC estimation across all datasets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.