Abstract
-State-of-charge (SOC) plays a fundamental role in guiding battery management strategies. Recently, a variety of deep learning methods have been successfully applied in SOC estimation with impressive estimation accuracy. Nevertheless, the pros and cons of deep-learning estimators remain unexplored. This work investigates the performance of four state-of-the-art deep learning algorithms in the context of SOC estimation, including the fully connected neural network (FCNN), long short-term memory (LSTM), gate recurrent unit (GRU) and temporal convolutional network (TCN). Two kinds of lithium-ion batteries are tested by using specific devices programmed with dynamic drive cycles. The four methods are then evaluated regarding the accuracy by using experimental data collected at 25 °C. Afterwards, their robustness is evaluated at various temperatures with noise-polluted input data. The battery chemistries are also taken into consideration to assess their generalization performance. Finally, the computational costs are quantified to evaluate the efficiency of the four algorithms. Our results indicate that the LSTM, GRU, and TCN are superior to the FCNN in terms of accuracy. The TCN is the most robust one while the GRU has the shortest time at each time step among the three methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.