Abstract

A novel hybrid energy harvester integrated with piezoelectric and electromagnetic energy harvesting mechanisms is investigated. It contains a piezoelectric cantilever of multilayer piezoelectric transducer (PZT) ceramics, permanent magnets, and substrate of two-layer coils. The effect of the relative position of coils and magnets on the PZT cantilever end and the poling direction of magnets on the output voltage of the energy harvester is explored. When the poling direction of magnets is normal to the coils plane, the coils yield the maximum output voltage, i.e., the type I and III devices. The maximum output voltage and power from the PZT cantilever of the type III device are 0.84 V and 176 µW under the vibrations of 2.5-g acceleration at 310 Hz, respectively. And the maximum output voltage and power from the coils are 0.78 mV and 0.19 µW under the same conditions, respectively. The power density from the type III device is derived as 790 µW/cm3 from piezoelectric components and 0.85 µW/cm3 from electromagnetic elements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.