Abstract

We analyze and design a hybrid dielectric-loaded plasmonic waveguide (HDLW) featuring a long propagation length and strong field confinement, for efficient control and confinement of light in the subwavelength area of λ2/160. The HDLW is then used to build compact wavelength selective components of high optical performance, including ring resonators (RR) and add-drop filters (ADF). In particular, we demonstrate RRs having a small ring radius of 2 μm, a low transmission loss of 0.8 dB, a high extinction ratio of 21 dB, and a free spectral range of 66 nm. Moreover, an ADF with a ring radius of 2 μm features a 12 dB extinction ratio, a transmission loss of 0.9 dB, and a channel isolation level of 10 dB at the resonant wavelength. The compact footprint and superior performance of these plasmonic components make them promising building blocks for future nanoscale electronic-photonic integrated circuits for data communication and sensing applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.