Abstract

We numerically report the submicrometer radius (0.5 μm) and high confinement (mode area ~λ(2)/1200) plasmonic ring resonators for both all-pass and add-drop filters based on the hybrid metal-oxide-semiconductor (Ag-SiO(2)-Si) waveguide platform. The best tradeoff between the propagation length and the confinement of this hybrid plasmonic waveguide platform is also discussed and compared to the dielectric-loaded plasmonic waveguide counterpart. We show that the ring resonator all-pass filter features an extinction ratio as high as 23 dB with a transmission loss of 1.5 dB, and a wide free spectral range of 168 nm with a bandwidth of 14 nm. Moreover, the demonstrated add-drop filter achieves an extinction ratio larger than 12 dB with a channel isolation between the through and drop channels of 13.5 dB at the resonant wavelength. These demonstrated plasmonic devices reveal as potential building blocks for future nanoscale electronic-photonic integrated circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call