Abstract

In recent times, a huge amount of data is being created from different sources and the size of the data generated on the Internet has already surpassed two Exabytes. Big Data processing and analysis can be employed in many disciplines which can aid the decision-making process with privacy preservation of users’ private data. To store large quantity of data, Geo-Distributed Data Centres (GDDC) are developed. In recent times, several applications comprising data analytics and machine learning have been designed for GDDC. In this view, this paper presents a hybrid deep learning framework for privacy preservation in distributed DCs. The proposed model uses Deep Neural Network (DNN) for the feature extractor and classifier operations. In addition, Siamese training method is applied to fine-tune the prevention of secondary inference on the data. Moreover, gradient descent approach is employed to reduce the loss function of the DNN model. Furthermore, Glow-worm Swarm Optimization (GSO) algorithm is utilized to fine tune the hyperparameters of the DNN model to improve the overall efficiency. The proposed model is executed on a Hadoop based environment, i.e., Hadoop Distributed File System (HDFS), which has two nodes namely master node and slave nodes. The master node is considered as the main user node to get the services from the service provider. Every slave node behaves as per master node’s instruction for data storage. In order to validate the enhanced performance of the proposed model, a series of simulations take place and the experimental results demonstrate the promising performance of the proposed model. The simple technique has reached a maximum gender recognition accuracy of 95, 90 and 79 on the applied data 1, 2 and 3 respectively. Also, the reduced simple approach has attained reduced gender recognition with the accuracy of 91, 84 and 74 on the applied data 1, 2 and 3 respectively.

Highlights

  • At present, with big data and further data generation, it is increasingly important to process and store largescale data in real-time that has led to the placement of cloud computing [1]

  • This paper presents a hybrid deep learning framework for privacy preservation in distributed Data Centre (DC)

  • By raising generated data volumes in Geo-Distributed Data Centres (GDDC) to allocate computations for using data locality turns into a developing area of research [5], instead of collecting each data needed for computation of an individual datacentre

Read more

Summary

Introduction

With big data and further data generation, it is increasingly important to process and store largescale data in real-time that has led to the placement of cloud computing [1]. Consideration of security, disaster recovery encourages organizations and globalization to share their DCs through distinct areas, near to cloud users and over a longer geographical distance [3]. This GDDC that interchanged the centralized one, offers solution to handle the larger volume and velocity of big data produced from geographically distributed sources [4]. This paper presents a hybrid Deep Learning (DL) framework for preserving the privacy in distributed DCs. The proposed model uses Deep Neural Network (DNN) for the feature extractor and classifier operations. To examine the better outcomes of the proposed model, a comprehensive experimental analysis is performed and the results are inspected in terms of different measures

Related Work
The Proposed Method
Hadoop Environment
DNN Model for Privacy Preservation
Siamese Training Method
Hyperparameter Tuning Using GSO Algorithm
Movement Phase
Performance Validation
Methods
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call