Abstract

This letter proposes a data-driven hybrid deep learning method for dynamic total transfer capability (TTC) control. It leverages deep learning (DL) to achieve fast prediction of TTC and reduce the problem complexity, while the deep reinforcement learning (DRL) method, e.g., proximal policy optimization (PPO), is enhanced by competitive learning (CL) to obtain a better generalization of the DRL agents. This also allows us to deal with system stochasticity. Comparison results with other model-based alternatives on the IEEE 39-bus system highlight the advantages of the proposed method for variable unseen and insecure scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.